Implicit Differentiation

So far, most functions have been expressed in **explicit form**. Some, however, are defined **implicitly**.

For example:

<u>Implicit Form</u> Explicit Form Derivative x²y=1

Examples:

It is not always possible, however, to solve for y explicitly. For example, $x^2 - 2y^3 + 4y = 2$. In these cases, we must use **implicit differentiation**.

The key to finding $\frac{dy}{dx}$ implicitly is understanding that the differentiation is happening with respect to x.

- When you differentiate terms involving x alone, you can differentiate as usual.
- When you differentiate terms involving y, you must apply the Chain Rule.

<u>Ex. 1</u>: Differentiate each of the following:

a) $\frac{d}{dx} \begin{bmatrix} x^3 \end{bmatrix}$ b) $\frac{d}{dx} \begin{bmatrix} y^3 \end{bmatrix}$

c)
$$\frac{d}{dx}[x+3y]$$
 d) $\frac{d}{dx}[xy^2]$

Guidelines for Implicit Differentiation in equations

- 1. Differentiate both sides of the equation with respect to x.
- 2. Collect all terms involving $\frac{dy}{dx}$ on the left side of the equation and move all other terms to the right side of the equation.
- 3. Factor $\frac{dy}{dx}$ out of the left side of the equation.
- 4. Solve for $\frac{dy}{dx}$ by dividing both sides of the equation by the left-hand factor that does not contain $\frac{dy}{dx}$.
- **<u>Ex.</u>** 2: Find $\frac{dy}{dx}$ given that $y^3 + y^2 5y x^2 = -4$.

<u>Ex.</u> 3: Find all points of horizontal and vertical tangencies for the graph of $x^2 + y^2 = 1$.

Ex. 4: Determine the slope of the tangent line to the graph of $y^3 - xy = -6$ at the point (7, 2).

<u>Ex. 5</u>: Determine the slope of the *normal* line of $x^2 + 4y^2 = 4$ at the point $(\sqrt{2}, -\frac{\sqrt{2}}{2})$.

<u>Ex. 6:</u> The position function of particle moving along the y axis is given by t = siny where t is in seconds and y is in ft. Find the velocity function (dy/dt).

Find the acceleration function.

What is the velocity at $t=\pi$?

Is the particle speeding up or slowing down at t= $3\pi/4$?

Try: Find $\frac{dw}{dt}$: $2\sin w \cos t = \pi^2$

Second derivatives...ugh

<u>Ex.</u> 7: Given $x^2 + y^2 = 25$, find $\frac{d^2y}{dx^2}$.

Ex. 8: Given
$$x^2 + xy = 5$$
, find $\frac{d^2y}{dx^2}$.